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Question 1: (12 marks) Marks
a) Expand and simplify (V2 — 3)?
b) Find e =% correct to three decimal places.

c) Find the compound interest earned on $80 000 if invested for three years at a

rate of 6% per annum compounding quarterly.

d) Solve the equation 4x2 = x
e) Solve the equation |4 — x| = 2x.
) Sketch the parabola x? = ~4y + 8 showing its focus and directrix.

Question 2: (12 marks) (Start a new page)

a)

<

NOT TO SCALE

g
The graph represents the function y = 6x% — x3.
The point A is an x intercept.

The point B is a local maximum.

The point C is a point of inflexion.

Find

Q) the coordinates of A

(i)  the coordinates of B

(iii)  the coordinates of C



b)

120 75°

60°

(1) Find the length of BD as a simplified surd.
(ii) Find the length of BC correct to one decimal place.
(iii)  Find the area of triangle ABD as a surd.

Question 3: (12 marks) (Start a new page)

a)

b)

d)

The first term of an arithmetic sequence is 4 and the fifth term is four times the

third term. Find the common difference.

Determine the derivates of®

i)  (Bx+7)

.. 2x
(1) R

Find the EXACT values of the following definite integrals:
(i) f 01 e3* dx
G) f ——dx

0 1+x

The sum of the first four terms of a geometric sequence is 30 and the limiting

sum is 32. If the common ratio is negative, find the common ratio and the first term.

Question 4: (12 marks) (Start a new page)

a)

Find the equation of the line (in general form) perpendicular to 2x — 3y — 6 =0

and intersecting it on the x axis.



The line / passes through A (-1,3) and B (3,7).

NOT TO SCALE

v

v
(1) Find the length of AB (in exact form)
(11) Find the equation of the line /.

(iii)  Show that the distance from O to the line / is % units.

(iv)  Calculate the area of AAOB.

The points A(2,-6) and B(4,8) are at opposite ends of the diameter of a circle.
Find

(1) the centre of the circle.

(i)  theradius of the circle.

(iif)  the equation of the circle.



Question 5:

a)

b)

Given f'(x) = 3x% — 4,
find y = f(x) if the function passes through (3, 8)

A = D G

ABCD is a parallelogram.

Copy the above diagram onto your writing paper
(1) Prove AEFC ||| ADFA.

(11) Find the value of x. (with a reason)

(111)  Find the length of CG. (with reasons)

A person wishes to invest $A at the beginning of each month at a compound

interest rate of 0.6% per month. How much does the person invest each month in

order to have $20 000 saved at the end of the first year?

2
EC=x
AD =12
FC=10
AF =15
ED||CG
NOT TO SCALE
2
2
4



Question 6: (12 marks) (Start a new page)

a) (i) Sketch y = x% + 6 and y = 12 — x on the same axes.
Find the x coordinate of the points in intersection.
(i)  Find the area in the first quadrant bounded by the y axis, y = x* + 6
and y= 12 — x.

b) Use Simpson’s Rule with 5 function values to estimate

4
fo V5 4+ x2dx correct to 2 decimal places.

c) Find log,, 57 correct to 2 decimal places.

vx—1

x2+1

)

d) @) Use logarithm laws to simplify In(

Vvx—1

x2+1

)

.. d
(i) ~ Hence find — (In

Question 7: (12 marks) (Start a new page)

a) The size of a colony of insects is given by the equation
P = 3000e*t
Where P is the population after t days.
(1) Write down the initial population.
(i1) If there are 3600 insects after one day, find the value of &, correct to

2 decimal places.

(iii)  When will the colony double its initial population? (Answer correct to

the nearest day).
(iv) What is the rate of growth of the population after 2 days?

b) Find the volume of the solid formed when the curve y = +/x is rotated about

the x axis between x = 1 and x = 5. (Leave your answer in terms of m)



c) Consider the equation 2x? — (3 + k)x +2 = 0.

For what values of &£ does the equation have
(1) equal roots 2

(ii) different real roots 1

Question 8: (12 marks) (Start a new page)

a) Differentiate

@) sin (1 — 2x3) 2
(i1) tan3x 2
(iii) cos?x 2
b)
y
A
(0,2)
(-1,0) (1,0)

A
[
x

An ornamental arch window 2 metres wide and 2 metres high is to be made in the shape of

an arc of either a cosine curve or a parabola, as illustrated on axes above.

1) If the arch is made in the shape of the curve y = 2 cos g X, 2

find the area of the window. (Your answer may be left in terms of 7).

11) If the arch is made the shape of an arc of a parabola, find :
a )  the equation of the parabola 2
B) the area of the window 2



Question 9
a) (i)

(i1)
b)

(12 marks) (Start a new page)

On the same diagram sketch the curve y = sinmx and the line y = x, in
the domain —1 <x < 1.

Hence find the number of solutions to the equation sintx — x = 0 in
the domain —1 < x < 1.

0 NOT TO SCALE

B C

The diagram shows a sector OAB of a circle, centre O and radius x metres.

Arc AB subtends an angle @ radians at O. An equilateral triangle BCO adjoins

the sector.

Write down expressions for:

®
(i)

o @
(i)

the perimeter of the figure ABCO.
the area of the figure ABCO.

d
Show that = (secx) = secxtanx

Hence find the equation of the normal to y = sec x at the point where

I .
x=7 ( leave your answer in exact form)



Question 10 (12 marks) (Start a new page)

2)

b)

NOT TO SCALE

The interior of a bowl is shaped by rotating the arc of the curve y = log.x from

x = 1to x = 5 around the y axis. Calculate the capacity of the bow! in terms

of .

Given that a® + b? = 7ab, use this result to show that

a+b

@0 (5= )=ab
(i1) and hence using part 1) write
log (122 ) - 2 (loga + log b)

in simplest form.



C) The diagram shows a rectangular field measuring 9 km by 15 km. From A, a bike rider
wishes to go to B.
Riding across the field from A to C, he can average Skm/hr.
Along the road BC, he can average 13 km/hr.
Let PC=x

9 km
5 ]
c N P
Erer e
€ >
15 km
V81+x?

1) Show that the time he takes to go from A to C is

(i1) Show that the total time he will take to go from A to C to B will be

V81+x2 +15—x
5 13

T =
(iii)  Show that the shortest time for the journey will occur when he rides to a point

BEkm from P.
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